
Micromega Corporation 1 Revised 2005-05-05

This application note describes a suggested method of developing support software for connecting a
microcontroller to the uM-FPU V2 floating point coprocessor using a SPI interface.

Introduction
Micromega provides support software for many popular microcontrollers, so it’s worth checking the
Micromega website (http://www.micromegacorp.com) to see if software is already available for your
microcontroller, or email info@micromegacorp.com to enquire about any plans for development. If support
is not currently available for your microcontroller, you can easily develop your own support software. This
application note describes a suggested method for developing a SPI interface. Since implementation details
vary with each different microcontroller, pseudo-code is used to describe the actions of the each routine,
which can then be translated into assembly code, C or Basic for your microcontroller.

Additional Documents
Before getting started it is recommended that you review the uM-FPU V2 Datasheet, and the uM-FPU V2
Instruction Set documents. It is also recommended that the serial interface for the uM-FPU debug monitor
be connected as described in the uM-FPU V2 Datasheet. This provides access to valuable debugging
information while testing the support routines.

Support software and documentation provided by Micromega for other microcontrollers can also serve as a
good example of the code you will need to develop.

SPI Interface
The uM-FPU can be connected using either a 2-wire or 3-wire SPI interface depending on the capabilities
of the microcontroller. The 3-wire SPI interface uses separate data input and data output pins on the
microcontroller, while the 2-wire SPI interface uses a single bidirectional pin for both data input and data
output. If a 2-wire interface is used, the microprocessor pin must be changed from output to input as
required. It can be easier to debug a 3-wire interface because the input data and output data are always
clearly distinguishable when tracing with an oscilloscope or logic analyzer. If a 2-wire interface is required,
a suggested approach is to initially test and debug using a 3-wire interface, then change to a 2-wire
interface.

If you plan to implement SPI through software (bit-bang), any general purpose I/O pins can be used. If your
microcontroller has built-in SPI hardware support that you intend to use, the I/O pins will generally be
predefined.

This application note describes a software (bit-bang) implementation of a 3-wire SPI interface, and refers to
the pins as follows:

Microcontroller Pin uM-FPU Pin Description
FPU_CLOCK SCLK clock
FPU_DATAOUT SIN output from microcontroller, input to uM-FPU
FPU_DATAIN SOUT input to micro, output from uM-FPU

uM-FPU Application Note 7

Developing a SPI Interface
for uM-FPU V2

Developing a SPI Interface

Micromega Corporation 2 uM-FPU Application Note 7

3-wire SPI Connection

CS
SOUT
SCLK
VSS

VDD
TSTIN

TSTOUT
SIN

+5V
uM-FPU

FPU_DATAOUT
Microcontroller Pins

RS-232 Rx
RS-232 Tx

FPU_DATAIN
FPU_CLOCK

Device Level Support Routines
The interface with the uM-FPU is implemented with five device level support routines as follow:

fpu_reset resets the uM-FPU
fpu_send sends a byte to the uM-FPU
fpu_read reads a byte from the uM-FPU
fpu_wait waits until the uM-FPU buffer is empty
fpu_readDelay implements the required read delay

The steps required to implement these routines are as follows:
1. Implement initial version of fpu_reset
2. Implement fpu_send
3. Implement fpu_wait
4. Implement fpu_readDelay
5. Implement fpu_read
6. Add synchronization check to fpu_reset
7. Create include file with uM-FPU opcode definitions

Step 1 – Implement initial version of fpu_reset
The uM-FPU must be reset at the start of every program to establish synchronization with the
microprocessor. This is the first routine that needs to be implemented. The fpu_reset routine sends a
reset pulse, waits for the reset to complete, then checks for proper synchronization by sending a SYNC
opcode (0xF0) and reading the response byte. Since we have not yet developed the code to send and read
data, we will add the synchronization check later (in step 6). The fpu_reset routine can also set the
direction and initial value of the I/O pins used to interface to the uM-FPU.

Parameters: none
Return: sync character (0x5C), if reset is successful
C prototype: unsigned char fpu_reset(void);
Pseudo-code:

set FPU_CLOCK as output ; set I/O pin direction
set FPU_DATAIN as input
set FPU_DATAOUT as output

FPU_CLOCK = 0 ; set clock and data Low
FPU_DATAOUT = 0
FPU_CLOCK = 1 ; pulse clock High for 500 microseconds
delay for 500 microseconds
FPU_CLOCK = 0
delay for 8 milliseconds

Developing a SPI Interface

Micromega Corporation 3 uM-FPU Application Note 7

return

Using Basic:
The INPUT and OUTPUT commands are used to set the direction and initial value of the I/O pins. Use
the HIGH and LOW commands to set the value of an I/O pin, and the Pause command for
implementing a time delay.

Write a test routine to call fpu_reset and check the timing on uM-FPU SCLK and SIN pins. The Reset
pulse must be a minimum of 500 microseconds and the Reset Delay must be a minimum of 8 milliseconds.

SCLK

SIN

Reset Reset Delay

Debug Monitor:
Whenever a reset occurs , the following message is displayed by the debug monitor:

{RESET}

Step 2 – Implement fpu_send
The fpu_send routine sends an 8-bit byte to the uM-FPU. The data is sent to the uM-FPU in SPI Mode 0
format, summarized as follows:

Clock idle state is Low
Clock is active High
Data is transmitted most significant bit first
Data is latched on leading edge of the Clock
Data changes on trailing edge of the Clock

If you are implementing a software (bit-bang) interface it helps to keep the clock High and Low times
relatively equal, and to balance the timing for zero and one bits. This ensures that timing is consistent
regardless of the data being sent, and minimizes the additional delay code that might be required at higher
microcontroller clock frequencies to ensure correct timing specifications for SCLK High, SCLK Low, and
the minimum data period.

Parameters: 8-bit byte
Return: none
C prototype: void fpu_reset(unsigned char dataByte);
Pseudo-code:

dataByte ; 8-bit byte passed as input parameter
bit ; bit value
cnt ; bit count

cnt = 8 ; set bit count

loop: ; shift out 8 data bits (MSB first)
set bit = most significant bit of dataByte
shift dataByte left
FPU_CLOCK = 0
if bit = 0, FPU_DATAOUT = 0
else if bit = 1, FPU_DATAOUT = 1
FPU_CLOCK = 1

Developing a SPI Interface

Micromega Corporation 4 uM-FPU Application Note 7

cnt = cnt - 1
if cnt > 0 then goto loop

FPU_CLOCK = 0 ; return clock to idle state
delay for remainder of Minimum Data Period (if required)
return

Using Basic:
There is often a SHIFTOUT command available for shifting data out to an I/O pin. The uM-FPU has a
32-byte instruction buffer, so if the SHIFTOUT command supports sending more than one byte at a
time, multiple bytes can be sent with a single SHIFTOUT command. Alternatively the pseudo-code
can be implemented using the HIGH and LOW commands.

Write a test routine to send three bytes using the fpu_send routine (e.g. 0x00, 0xFF and 0xAA).
fpu_reset
fpu_send(0x00)
fpu_send(0xFF)
fpu_send(0xAA)

Use an oscilloscope or logic analyzer to confirm that the timing parameters meet the specifications outlined
in the uM-FPU V2 Datasheet. SCLK High and SCLK Low should be a minimum of 250 microseconds
each, and the minimum data period should be 15 microseconds. A delay may be required at to the end of
the fpu_send routine to ensure the minimum data period is provided. The minimum data period is the
time from the start of one byte to the start of the next byte.

SOUT
SIN

SCLK

Busy Ready

Minimum
Data Period

Minimum
Data Period

Ready

Minimum
Data Period

Debug Monitor:
If the instructions are received properly by the uM-FPU, the debug monitor will display the following:

00 FF AA

Step 3 – Implement fpu_wait

The fpu_wait routine is used to ensure that the 32-byte instruction buffer and the debug trace buffer are
both empty. The fpu_wait routine must always be called before data is read from the uM-FPU. It should
also be called at least once for every 32 bytes of output to ensure that the instruction buffer doesn’t
overflow. If the uM-FPU is busy, the FPU_DATAIN pin will be High. The fpu_wait routine monitors
the FPU_DATAIN pin and waits until it is Low.

Parameters: none
Return: none
C prototype: void fpu_wait(void);
Pseudo-code:

loop: ; wait until uM-FPU is ready
if FPU_DATAIN = 1 then goto loop

Developing a SPI Interface

Micromega Corporation 5 uM-FPU Application Note 7

return

Using Basic:
The input pins can generally be referenced as a bit or byte variable to test the value of FPU_DATAIN.

Step 4 – Implement fpu_readDelay

Instructions that read data from the uM-FPU require a minimum 180 microseconds delay after the opcode
has been sent before data can be read (or 90 microseconds if debug trace is not enabled). The read delay
routine simply delays for 180 microseconds. In some implementations, the fpu_readDelay routine
may not be required if sufficient delay occurs due to the overhead associated with calling the interface
routines. For future compatibility, and when operating at higher speeds, it is a good idea to still implement
code using fpu_readDelay before reading data.

Parameters: none
Return: none
C prototype: void fpu_readDelay(void);
Pseudo-code:

delay for 180 microseconds ; wait for Read Setup delay
return

Using Basic:
In many Basic implementations, the fpu_readDelay routine is not required because the overhead
associated with the SHIFTOUT and SHIFTIN commands provides sufficient delay. On faster
microcontrollers or when using compiled Basic it may be necessary to use fpu_readDelay to
ensure the minimum read delay period is provided. The PAUSE command can be used to provide a
delay.

Step 5 – Implement fpu_read

The fpu_read routine reads an 8-bit byte from the uM-FPU, and is implemented in a similar manner to
the fpu_send routine. If you are implementing a software (bit-bang) interface it helps to keep the clock
High and clock Low times relatively equal, and to balance the timing for zero bits and one bits. This
ensures that timing is consistent regardless of the data being sent, and minimizes the additional delay code
that might be required at higher microcontroller clock frequencies to ensure correct timing specifications
for SCLK High, SCLK Low, and the minimum data period.

Parameters: none
Return: 8-bit byte
C prototype: unsigned char fpu_read(void);
Pseudo-code:

dataByte ; 8-bit byte
bit ; most significant bit of dataByte
cnt ; bit count

cnt = 8 ; set bit count

loop: ; shift in 8 bits of data (MSB first)
if FPU_DATAIN = 0, then bit = 0
else if FPU_DATAIN = 1, then bit = 1
shift dataByte left
set least significant bit of dataByte = bit
FPU_CLOCK = 1
FPU_CLOCK = 0

Developing a SPI Interface

Micromega Corporation 6 uM-FPU Application Note 7

cnt = cnt – 1
if cnt > 0 then goto loop

delay for remainder of Minimum Data Period (if required)
return dataByte

Using Basic:
There is often a SHIFTIN command available for shifting data in from an I/O pin. If the SHIFTIN
command supports reading more than one byte at a time, multiple bytes can be read. Alternatively the
pseudo-code can be implemented using the HIGH and LOW commands.

SOUT
SIN

SCLK

Busy Ready

Read Byte
Delay

Ready

Minimum
Data Period

Read Setup
Delay

Write a test routine to send the SYNC opcode (0xF0) to the uM-FPU and read the byte that is returned. If
SYNC is successful, a 0x5C byte will be returned. The sequence is as follows:

fpu_send(0xF0) ; send SYNC command
fpu_readDelay ; wait for Read Setup Delay
n = fpu_read ; get the return value

Debug Monitor:
If the instructions are received properly by the uM-FPU, the debug monitor will display the following:

F0:5C

Step 6 – Add synchronization check to fpu_reset

Add the synchronization code shown above to the end of the fpu_reset routine. The byte that is read
after sending the SYNC opcode is returned by fpu_reset. The calling routine can check if the return
value is 0x5C to ensure that the reset and synchronization was successful. Note: In all other situations
fpu_wait must be called before sending an opcode that returns data, but fpu_wait is specifically not
used in the fpu_reset routine, since an 8 millisecond delay immediately precedes it, and the uM-FPU
will always be ready if the reset is successful. If the reset is not successful an fpu_wait could wait
indefinitely, so by not including it, the fpu_reset routine will always return with a value.

Step 7 – Create include file with uM-FPU opcode definitions

To make it easer to write code for the uM-FPU, an include file should be created that contains definitions
for all of the uM-FPU opcodes and the sync character. Various include files are available on the
Micromega website and can easily be adapted as required.

Developing a SPI Interface

Micromega Corporation 7 uM-FPU Application Note 7

Examples using the Device Level Support Routines
Calculate y = 5x + 30

fpu_send(SELECTA+Y) ; select Y register
fpu_send(LOADBYTE) ; load 5 to register 0 and convert to floating point
fpu_send(5)
fpu_send(FSET) ; y = 5.0
fpu_send(FMUL+X) ; y = y * x
fpu_send(LOADBYTE)
fpu_send(30) ; load 30 to register 0 and convert to floatint point
fpu_send(FADD) ; y = y + 30

Read byte from uM-FPU register n
fpu_wait ; wait until uM-FPU is ready
fpu_send(SELECTA+N) ; select N register (32-bit integer value)
fpu_send(XOP) ; send READBYTE instruction
fpu_send(READBYTE)
fpu_readDelay ; wait for read delay
n = fpu_read ; read the byte

Adding Additional Support Routines
The five device level support routines developed above provide all of the necessary support for using the
uM-FPU with your microcontroller. Using these device level routines, additional routines can be developed
to provide a higher level of support. Examples might include:

print_float print formatted floating point number
print_long print formatted long integer number
print_version print uM-FPU version number

load_float load floating point value
load_long load long integer value
load_floatStr load floating point string
load_longStr load long integer string

Further Information
Check the Micromega website at www.micromegacorp.com for up-to-date information.

